+1 (713) 688-4600 | Sales Toll-Free: (855) SELL BPM | 24/7 Service: +1 (832) 617-5702 info@bpmmicro.com
Select Page
Security Solutions from BPM

Security Solutions from BPM

Unlike other security solutions that are expensive, rigid, and one-size-fits-all, BPM offers a range of options based on your particular needs

BPM’s Security Solution for programming, BPM.NCRYPT, can utilize your existing HSM, secure server, or any other networked and offline data sources. BPM Microsystems can also provide a turn-key package that is flexible, scalable, and affordable.

Why trust BPM.NCRYPT?

Security and the encryption of programmable devices to protect intellectual property and the products in which these devices are used has never been more important than it is today. In fact, customers have been trusting BPWin, BPM’s award-winning Process Software, to provide robust, innovative security solutions for over twenty years.

BPM.NCRYPT leverages 36 years of supporting mission-critical devices along with our proven experience developing and releasing sophisticated security and encryption solutions that meet your unique needs. All of our automated machines are enabled to support MES factory integration with BPWin API and include complex security features, at no additional cost. If you are like us, we believe one size or one solution does not fit all. It starts with a conversation– what do you want to accomplish?

Learn More See Real-World Case Studies
Up-Time, Accuracy, and Waveforms

Up-Time, Accuracy, and Waveforms

Sweat the Details

Two metrics in device programming are super-important (but the third might be even more important). Here are several questions to ask:
  • What can I expect for up-time and utilization for my Device Programmer?
  • How does BPM ensure the highest quality and accuracy of finished programmed devices?
  • How does BPM deliver the cleanest waveforms? Why are clean waveforms important?

Up-Time/Utilization Rates

With routine maintenance and yearly calibration, BPM systems are designed for maximum uptime. Many factories worldwide run their Automated Programming Systems 6 days a week/3 shifts a day. For purposes of allocation, BPM recommends using an 85% utilization rate (but you may find it above 90% in actual use). BPM’s systems are easy to set up, especially compared to other comparable systems, making their utilization rate the best in class.

Accuracy

BPM ensures accuracy and repeatability for device programming In three main ways: Auto-teach, Vision Alignment, and Job Automation. All programming systems are highly repeatable– once they are set up, they will reliably repeat their program (even if it isn’t perfect). The trick is to start with a perfect setup, resulting in repeatable, reliable, and accurate yield.

A: Teach too high may cause misalignment. B: Teach too low may cause micro-fractures that oxidize over time. The device may pass the initial test only to fail in the field

WhisperTeach is BPM’s patented process to “auto-teach” the critical Z-height of input-output locations and sockets. You see, it’s easy, with a downward camera, to center the X/Y coordinates in the input/output and socket locations (and if you are off slightly, BPM’s on-the-fly vision centering auto corrects and auto centers). But there is no camera to precisely place and pick up the Z (up and down). Some locations are more difficult than others because of where in the machine they are. But even in the “easy” locations, a human operator can only see to about 45 microns (slightly smaller than the width of a human hair).  WhisperTeach is a major factor in BPM’s systems ease and speeds up set-up without sacrificing quality– it’s more accurate (within 15 microns) than a human operator, even a highly trained technician.

For on-the-fly vision alignment, BPM systems utilize a CyberOptics LNC-120 camera which precisely spins the device between the input/output location and the socket without requiring the system to slow down. This boosts DPH (Devices per Hour) without sacrificing quality. BPM’s systems can handle the smallest chip-scale packages in the industry (as small as 1mm x 0.5mm).

Finally, Job Automation allows multiple workflows to be stored and retrieved quickly. BPWin, BPM’s Process Software, calls this application JobMaster. It allows you to prepare programming jobs to meet precise specifications, and then save the jobs for future use for repeatable quality.

Waveforms

BPM’s programming site technology has its origins in test equipment. Everything, from the pin drivers to the gold-plated contacts on sites and sockets, is designed to deliver the cleanest waveforms. If you want to know more, read the Signal Integrity article here. For the short version, signal integrity delivers maximum quality and device life expectancy (you don’t want “device amnesia“).

Clean waveforms give you programming results that you can count on and the highest first-pass yields.

Ease of Use

Ease of Use

Largest Non-Machine Cost

A huge roadblock in bringing your device programming in-house might be the prospect of staffing. Here are several questions to ask your Programming Equipment Supplier:

  • Does your system require an experienced technician?
  • How long does it take for someone to be trained to operate the system?
  • What happens if we need to operate a second or third shift to keep up with demand?
  • Does the machine have any special requirements, such as filtration or ESD mitigation?
  • What about maintenance and up-time?

Experienced Technician Not Required

The automated systems from BPM are designed and built in the USA to make device programming fast and easy while providing the best quality and highest throughput in the world.

Anyone Can Be Trained

Just about anyone with a couple of hours of training can operate any of BPM’s programmers. That also means no quality drop-off on your second or third shift crews.

No Special Requirements

BPM’s programmers have a small footprint, with no special room requirements other than power (20A 240VAC (+/- 10%)), compressed air, and HVAC to control humidity and temperature. While not a requirement for operation, BPM recommends an APS ionization kit (F3XIONIZER) for maximum throughput and highest quality output.

90% Plus Uptime/Utilization Rate

BPM systems are built to last with routine maintenance and tune-ups. There are hundreds of BPM automated programming systems still in use after more than 10 years (some after nearly 20 years of use).
Bring Automated Programming In-House

Bring Automated Programming In-House

Controlling quality and lead time are two critical reasons manufacturers bring automated programming in-house. Model 3901 is ideal for EMS (Electronics manufacturing services) that have a high part mix and cannot predict what they will be programming in the future. BPM’s 9th Gen universal programming technology currently supports over 38K devices, with several new or updated devices supported weekly. In addition, the 3901 is universalit can handle nearly any package on the market today.

CyberOptics LNC-120 CameraThe precision of our premium CyberOptics on-the-fly alignment camera allows the 3901 to handle the smallest chip-scale package (1.0mm x 0.5mm) to the largest fine-pitch QFP. You can be confident that you will achieve the high quality and yield that you desire.

How to get started Programming In-House

The first step is to get a device list. Use the Device List template to fill in and email to marketing_department@bpmmicro.com. The minimum requirement to get an accurate budgetary quote is the device Part Numbers. The additional information is helpful, especially estimated volumes. From there BPM will confirm socket card (adapter) support and will be in a position to provide a proposal for your consideration.

Why BPM

BPM has installed hundreds of automated programming systems around the world. We would expect your system to be operational within five days of receipt at your factory, including operator training.
Device List Template (excel) Device Search  Email Device List Template

BPM’s File Builder Wizard makes eMMC Programming Easy

BPM’s File Builder Wizard makes eMMC Programming Easy

eMMC File Concatenate Wizard Saves Time, Streamlines Workflow, Reduces Errors



BPM Microsystems have the best programmers, especially when it comes to complex microprocessors and high-density eMMC devices. BPM’s 9th Generation universal programmers offer the fastest flash programming times, as well as the widest universal device coverage, all in a single, universal programming site. With over 40,000 supported devices, there’s no one else that comes close.

eMMC devices have large, complex data patterns (4GB and up) that can be difficult to set up and prone to operator error. Previously, you had to manually load each eMMC data pattern one by one through the buffer loader. Depending on the complexity, this step was repeated three or more times. Each data pattern also required a manual calculation of data offsets, with no way to provide the checksum. As eMMC devices have gotten larger, the technical challenge of the file structure has become more complicated.

That is, until now.

Now, you can use the configuration information (which should be provided with the eMMC device) to streamline your workflow, eliminate errors, and simplify set-ups. Utilizing a Microsoft Excel template, you can easily streamline file formatting by giving you one document to capture the specifics of the eMMC project, and then utilizing parts of it for the automation tool. The template can also be shared with 3rd parties or saved as a historical record of the project specifications.

On average, the eMMC Wizard should only take a few minutes to edit the data template, and about 10 minutes for the tool to create the data pattern. While the file is outputting, the tool automatically calculates the checksums and verifies them on the fly. Multiple checksum options are available from the pull-down in the Excel template. It also replaces the manual calculation for each offset with an automated calculator, reducing the possibility of errors.

eMMC File Builder Wizard

In order to use the eMMC File Concatenate Wizard, you’ll need the latest version of BPWin, which can be downloaded here. (If your Software contract is expired, you may need to renew it; contact Inside Sales).

All new eMMC algo development will use a standard template that supports the file Wizard. In some cases, older algorithms will not be compatible. Please enter a Device Support request if you need an update to a legacy algorithm that is not currently compatible with the Wizard. If an algo does not support it (yet), you will be presented with this message:

You can submit a device support request here.

eMMC Wizard Example

In this example, we’ll use a Samsung eMMC with HS400 support. Select the Samsung KLMAG1JETD-B041 device/algo in BPWin. Then navigate to the File Concatenation tool via either the “Device” menu in the BPWin toolbar or by clicking the “Device Config” button, followed by “File Concatenation“.

You will now be asked to select an input configuration file and an output location. Select the output location for your concatenated file.

The input will need to be a filled-out Excel sheet, based on the template found here. Fill out the GP_SIZE_MULT_X fields (provided by the semi house), and the list of files, offsets, and checksums below. Don’t forget to select a specific checksum type from the dropdown menu, or the tool will not know how you want the checksum calculated.

Here are some examples of filled-out templates:

(Since the template requires user-inputted paths to the specified files, you need to ensure that the files are actually located there.)

Once you have selected an input configuration file and output location, click “Concatenate” and wait for the operation to finish. In the end, there should be an “output.bin” file located in the folder you specified earlier.

The green status bar will let you know your file is processing. Depending on file size, this may take several minutes

The concatenate wizard takes a few minutes to finish. If you are utilizing HS200 or HS400, you’ll still need to run the file through the image format tool– navigate via either the “Device” menu in the BPWin toolbar or by clicking the “Device Config” button, followed by “image format“ (remember, this is for HS200/400).

That’s it!

In summation, the eMMC File Wizard makes eMMC programming much easier and faster by walking through the steps to quickly build your files. This ensures quality programming results from first article qualification through production.

The eMMC File Concatenation Wizard is available with BPWin Version 7.0.7 and later. If you have any questions, please reach out to our Technical Support team. If you need to update your software agreement, please contact Inside Sales.

BPM API Delivers Quality and Traceability

BPM API Delivers Quality and Traceability

API (Application Programming Interface) is software that connects two or more applications and allows them to “talk” to each other. The main advantage is automating tasks– picture the future world of the movie WALL-E (perhaps that’s extreme). API optimizes human interactions to tasks only humans need to do. API can provide real-time control and communication between various applications and allow workers to focus on higher-value activities.

API of your Dreams

Practically anything you can dream up can be implemented with an API. It all starts with a brainstorming session where you bring together the different stakeholders for programmable projects, especially the front-line teams tasked with the day-to-day work. Ask them what’s working and what’s not. When you begin to identify things that can be improved, ask “what if” questions, such as, “what if there was a way to automate that?” As you break down the steps, especially those which are labor-intensive and prone to human error, you can begin to map out a better process. Try not to put the project management hat on just yet– that comes next.

API for Automated Work Order

Our previous API case study did a deep dive on an Automated Work Order for a large automotive contract manufacturer in Europe. The API functions as an automated work order to integrate their BPM Automated Programming Systems with their MRP system. It creates an electronic work order, operator checklist, and does finished goods allocation. To read more…

Once you have identified the pain points of your production or reporting process, you can begin to identify the “low hanging fruit” that can be implemented right away. Next comes mapping out what specific features you would like to see, and rate them by what would be the game changers and the things that would be nice, but not critical. Now you have the information a developer needs to begin the process of building out an API. Once the Developer has outlined the scope of work, you can decide how you will move forward based on their estimates for cost and timeframe.

Production Programming Advantages

BPM programming equipment, with the activation of BPWin API, has the capability to interface with your enterprise software in a maintainable and standard interface. BPWin API allows users to solve simple to complex process problems during the programming cycle. Designed specifically for BPM Automated Programmers, the API automation object model gives you the ability to utilize any programming language for interface to BPWin software. BPWin API is a breakthrough in programming equipment connectivity, that digitizes the information being generated throughout your device programming operations, and makes it available where, when, and how you need it.

Control and Monitoring API

BPWIN Application Programming InterfaceThe BPM API includes two major modules: Control and Monitoring. Control API (CJobControl Object) allows the external programs to control JobMaster related functions in BPWin software.

BPM API allows you to configure the programming cycle with commands such as select the device, load the data pattern file, set device options, start or stop the programming cycle, and more. Monitoring API (CJobMonitor Object) allows for programmer system status to be exported in real-time for monitoring through verification, auditing, and logging of data from within BPWin software.

This article focuses on two main issues: Quality and Traceability.

Quality

Quality possesses the concept of excellence, both in duration and in comparison. If something has quality, it will last longer, remain consistent, and possibly requires less maintenance. Statistical process control (SPC) utilizes statistical methods to monitor a process. By analyzing trends and anomalies, organizations can implement changes to improve the overall quality and process. Captured log file information can yield parts of a process that can be improved, or uncover hidden waste in trend analysis. SPC, when properly set up and utilized, takes a good process and makes it great (higher quality, more profitable).

Quality control starts with removing (as much as possible) the “human” error element. In a real-world use case, Control API steps the operator through a “checklist” to ensure the finished product is of the highest quality. An example of a manufacturing process flow:

  • Receive Job Sheet. The sheet contains required fields in a barcode format.
  • Barcode Job. This contains a link to the .abp file (BPM’s proprietary job file format which also contains the APS workflow instructions) stored on the customer’s server, to load the .bp file (specific to the job) and program file, set the device type, and device configuration stored within.
  • Barcode Pressure Plate. Scan the barcode for the correct Pressure Plate for the sockets.
  • Barcode Parts. Scan the received parts to ensure they match the job.
  • Barcode Quantity. Scan the correct batch quantity that is to be programmed.
  • Verify Setup. The final screen before programming, the Verify Screen ensures everything is set up correctly: Verify the socket modules, check devices, and pressure plates match those specified; check the quantity is correct. On-screen field highlighting of failed fields is used to assist.
  • Start Programming. When the verification passes, the job can start.

This electronic “checklist” virtually eliminates mistakes. If an incorrect barcode is received, the system returns an error message that allows the error to be quickly corrected.

One Process/Many Locations

Control API can also be used to make changes to the BPWin JobMaster files from even thousands of miles away without operator involvement. This is a huge improvement for facilities with multiple locations; corrections and improvements are pushed out from a single location, ensuring the same manufacturing process worldwide. Sharing jobs easily with other locations/machines/work centers/3rd party programming centers provides consistent, reliable finished products.

Traceability

At its root, BPM’s API allows tracking devices from raw goods to finished goods. By utilizing barcodes and readers, job work orders can be used to update ERP/MES systems in real-time. Alerts can be set up to bypass finished inventory locations to the production line for just-in-time manufacturing. This supports higher inventory turns, making the whole process faster without sacrificing quality, which is ideal for lean manufacturing. How much more productive (and profitable) would you be by eliminating non-value-added steps?

Traceability through Product Life

In the unfortunate event of a manufacturing “Chernobyl” (such as a recall), as much information as possible is vital to move forward quickly. Most automotive OEMs require laser marking to identify at least a minimum of identifying data, such as lot and date. It’s possible (depending on the size of the device) to tag version, factory location, even individual serial number, and which machine produced the part. Armed with this “DNA” information, you can quickly begin the forensic investigation to 1. Determine the root cause, and, 2. Implement corrective action, and, 3. Prevent it from ever happening again. Traceability is essential to the quality and continuous improvement.

Track to the Part-level

Marking devices with a laser marker takes traceability to a whole new level. Depending on the size of the device, anything from lot numbers to QR codes can be put on a finished programmed device. Each device can be marked with an individual serial number, or if that is overkill, a lot number. When you have multiple programmers, each machine can be identified– down to the part/shift/date. If there is ever an issue, you’ll have a record that can easily be accessed.

Similarly, you have the ability to access remote serialization protocols, beyond what is built into the BPM software. When the device is marked with a laser, there are no concerns with smudging or scratching; it will never fall off as a label might.

Media Tracking

Label printers can be used for finished media (tape/tray) with barcodes and human-readable information. This makes inventory control of blank and programmed devices easy, as parts move from raw goods to value-added programmed devices, and finally to consumption in the finished assembly.

In Conclusion

The goal of this article is to give you a taste of what is possible with BPM’s API. If you are new to device programming, you may be interested in a work order set-up, or at the very least, notifications and feedback. If you’ve been utilizing device programming, you may have identified some functionality that you wish existed, or perhaps a process that is overly repetitive or requires employee interaction. Once you’ve identified the process, BPM can assist you in developing an API, or provide your developers with the framework to write it yourself. For more information, please contact our team of Customer Service and Technical Support experts.